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Abstract

An acyclic coloring of a graph is a proper vertex coloring such that the union of any two color classes
induces a disjoint collection of trees. The more restricted notion of star coloring requires that the union
of any two color classes induces a disjoint collection of stars. We prove that every acyclic coloring of a
cograph is also a star coloring and give a linear-time algorithm for finding an optimal acyclic and star
coloring of a cograph. We also show that the acyclic chromatic number, the star chromatic number, the
treewidth plus one, and the pathwidth plus one are all equal for cographs.

1 Introduction

A proper vertex coloring (or proper coloring) of a graph G is a mapping φ : V → N+ such that if a and b are
adjacent vertices, then φ(a) #= φ(b). The chromatic number of a graph G, denoted χ(G), is the minimum
number of colors required in any proper coloring of G. An acyclic coloring of a graph is a proper coloring
such that the subgraph induced by the union of any two color classes is a disjoint collection of trees. A
star coloring of a graph is a proper coloring such that the subgraph induced by the union of any two color
classes is a disjoint collection of stars. The acyclic and star chromatic numbers of G are defined analogously
to the chromatic number and are denoted by χa(G) and χs(G), respectively. Since a disjoint collection of
stars constitutes a forest, it follows that every star coloring is also an acyclic coloring and χa(G) ≤ χs(G)
for every graph G. We will find it useful to consider the alternative definitions that result from the following
observation.

Observation 1. Let φ be a proper coloring of a graph G.

φ is an acyclic coloring of G if and only if every cycle in G uses at least three colors.

φ is a star coloring of G if and only if every path on four vertices in G uses at least three colors.

A great deal of graph-theoretical research has been conducted on acyclic and star coloring since they were
introduced in the early seventies by Grünbaum [18]. Our investigation of these problems from an algorithmic
point of view is motivated in part by their applications in combinatorial scientific computing, where they
model the optimal evaluation of sparse Hessian matrices. In fact, these coloring problems were independently
discovered and studied by the scientific computing community. The survey of Gebremedhin et al. [14] gives
a history of the subject as well as an overview of the use of these coloring variants in computing sparse
derivative matrices.

The acyclic and star coloring problems are both NP-hard, and most results concerning their complexity
on special classes of graphs are negative. In particular, both problems remain NP-hard even when restricted
to bipartite graphs [8, 9]. In addition, Albertson et al. [1] showed that the problem of determining whether
the star chromatic number is at most three is NP-complete even for planar bipartite graphs. The authors
also showed that it is NP-complete to decide whether the chromatic number of a graph G is equal to the

∗A preliminary version of this article appeared in Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combi-
natorial Optimization, 2009 [22].
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star chromatic number of G, even if G is a planar graph with chromatic number three. Inapproximability
results for both problems are given in [16].

Researchers have obtained a few positive algorithmic results for these problems on graphs for which the
acyclic or star chromatic number is bounded by a constant. In particular, Skulrattanakulchai [23] gives a
linear-time algorithm for finding an acyclic coloring of a graph with maximum degree three that uses four
colors or fewer, and Fertin and Raspaud [11] give a linear-time algorithm for finding an acyclic coloring of
a graph with maximum degree five that uses nine colors or fewer. To our knowledge, prior to this work no
polynomial time algorithm was known for either of these problems on a nontrivial class of graphs for which
the acyclic or star chromatic number is unbounded.

In this paper, we consider acyclic and star colorings of cographs, which are characterized by the fact
that they do not contain an induced path on four vertices [10]. This well-studied class has many other
characterizations; see [7, Theorem 11.3.3] for a partial list. Many problems that are NP-complete on general
graphs have polynomial time algorithms when restricted to cographs, in part because of the nice decom-
position properties that these graphs exhibit. Nevertheless, problems such as list coloring and achromatic
number remain NP-complete on this class [2, 19]. Our motivation, however, stems also from the fact that
the cographs can be characterized by the property that every acyclic coloring is also a star coloring. We
begin Section 2 with a proof of this fact. We then describe a constructive linear-time algorithm for finding
an optimal acyclic and star coloring of a cograph. When G is given as an adjacency list, our algorithm runs
in O(n + m) time, where n and m are the numbers of vertices and edges in G, respectively; only O(n) time
is required when G is given as a corresponding cotree.

Bodlaender and Möhring [5] showed that the pathwidth of a cograph equals its treewidth. In Section 3,
we prove that the acyclic colorings of a cograph G coincide with the proper colorings of triangulations of
G. As a consequence, we find that the acyclic chromatic number, the star chromatic number, the treewidth
plus one, and the pathwidth plus one are all equal for cographs. Additionally, we discuss the implications of
our results for the perfect phylogeny problem on this class of graphs.

2 Cographs

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that V1∩V2 = ∅. The disjoint union of G1 and G2 is the
graph G1

⋃
G2 = (V1∪V2, E1∪E2). The join of G1 and G2 is the graph G1 ∗G2 = (V1∪V2, E1∪E2∪{v1v2 |

v1 ∈ V1, v2 ∈ V2}).

Definition 1 (cograph). A graph G = (V,E) is a cograph if and only if one of the following conditions
holds:

(i) |V | = 1;

(ii) there are cographs G1, . . . , Gk such that G = G1
⋃

G2
⋃

· · ·
⋃

Gk;

(iii) there are cographs G1, . . . , Gk such that G = G1 ∗G2 ∗ · · · ∗Gk.

As noted in Section 1, the cographs are exactly the graphs with no induced path on four vertices.

Theorem 1. A graph G is a cograph if and only if every acyclic coloring of G is also a star coloring of G.

Proof. Any path on four vertices P in a cograph must either induce a cycle or contain an induced triangle;
thus any acyclic coloring of G must use at least three colors for P .

A graph for which every acyclic coloring is a star coloring cannot contain an induced path on four vertices
and therefore must be a cograph.

Corollary 2. If G is a cograph, then χs(G) = χa(G).

In the remainder of this section, we develop a linear-time algorithm for finding optimal acyclic and star
colorings of cographs. We begin with a general result concerning the acyclic and star chromatic numbers of
graphs formed by the join and disjoint union operations.

Lemma 1. The following hold for any graphs G1 = (V1, E1) and G2 = (V2, E2).
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(i) χa(G1
⋃

G2) = max{χa(G1), χa(G2)}.

(ii) χs(G1
⋃

G2) = max{χs(G1), χs(G2)}.

(iii) χa(G1 ∗G2) = min{χa(G1) + |V2|, χa(G2) + |V1|}.

(iv) χs(G1 ∗G2) = min{χs(G1) + |V2|, χs(G2) + |V1|}.

Proof. The proofs of (i) and (ii) are obvious.
Our proof of (iii) begins by showing that χa(G1∗G2) ≤ min{χa(G1)+|V2|, χa(G2)+|V1|}. Let G ≡ G1∗G2.

We describe an algorithm that, given optimal acyclic colorings of G1 and G2, produces an acyclic coloring φ
of G that uses the desired number of colors. Let φ1 and φ2 be arbitrary optimal acyclic colorings of G1 and
G2, respectively. Assume without loss of generality that χa(G2) + |V1| ≤ χa(G1) + |V2|. We construct φ as
follows. Color those vertices in V2 the same as they are colored by φ2, using the colors in {1, . . . , χa(G2)}.
Color those vertices in V1 such that each v ∈ V1 receives a distinct color in {χa(G2) + 1, . . . , χa(G2) + |V1|}.
Suppose that φ causes a bichromatic cycle C ⊆ V in G. Since each vertex in V1 gets a distinct color and no
vertex in V1 shares a color with a vertex in V2, it follows that C ∩V1 ≤ 1. If |C ∩V1| = 1, then C induces an
edge between distinct a, b ∈ V2, which implies that C cannot be bichromatic. Hence C must be contained
entirely in V2, which contradicts the fact that φ2 is an acyclic coloring of the subgraph of G induced by V2.
Thus φ is an acyclic coloring of G, which completes this direction of the proof.

Now suppose that χa(G) < min{χa(G1) + |V2|, χa(G2) + |V1|}, and let φ be an optimal acyclic coloring
of G. Since φ is also an acyclic coloring of the subgraphs induced in G by V1 and V2, which must receive
disjoint sets of colors, it follows that there exist a1, b1 ∈ V1 such that φ(a1) = φ(b1) and a2, b2 ∈ V2 such
that φ(a2) = φ(b2). Thus a1a2b1b2 is a bichromatic C4 in G, which is a contradiction.

The proof of (iv) is similar to that of (iii).

Cographs can be recognized in linear time [10], and most recognition algorithms also produce a special
decomposition structure in the same time bound when the input graph G is a cograph. We now introduce
this structure, which is often used in algorithms designed to work on cographs. We associate with a cograph
G a rooted tree TG called a cotree, whose leaves are in one-to-one correspondence with the vertices of G. For
the sake of clarity, we will use the word “node” when referring to cotrees, whereas the term “vertex” will be
reserved for the context of the original graph G. For a node tj in TG, Vj denotes the set of vertices in G that
correspond to leaves in the subtree of TG rooted at tj ; we denote by Gj the subgraph of G induced by Vj .
Every internal node of TG is labeled either 0 or 1, corresponding to the disjoint union and join operations,
respectively, in the following way. Let ti be an internal node of TG with children {t1, . . . , tk}. If ti is a
0 -node, then Gi = G1

⋃
· · ·

⋃
Gk. If ti is a 1 -node, then Gi = G1 ∗ · · · ∗ Gk. The canonical cotree of a

cograph is unique up to isomorphism and has the property that any path from a leaf to the root alternates
between 0 -nodes and 1 -nodes. It is often more convenient to work with cotrees whose internal nodes have
exactly two children. Since the operations

⋃
and ∗ are commutative and associative, one can show that any

cotree T can, in linear time, be converted into a cotree T ′ such that T ′ that meets this condition and has size
linear in that of T [5]. We will therefore assume throughout this paper that all cotrees are given in binary
form.

An example is shown in Figure 1.
Our algorithm for finding an optimal acyclic coloring of a cograph consists of two phases. In the first

phase, we traverse the cotree from the leaves to the root, computing for every tree node ti the values |Vi| and
χa(Gi). Additionally, we mark one child of every 1 -node as being saturated. These markings will be used in
the second phase, where they will indicate that all of the vertices associated with leaves in the corresponding
subtree should receive distinct colors.

Theorem 3. Given a cograph G and a corresponding binary cotree TG, an optimal acyclic coloring of G can
be found in O(n) time. Moreover, the obtained coloring is also an optimal star coloring.

Proof. We construct the desired coloring as follows. For every leaf node t! in TG, initialize χa(G!) = 1,
and mark t! as saturated. Now let ti be an internal node of TG whose children tj and tk have already been
visited. If ti is a 0 -node, then set χa(Gi) = max{χa(Gj), χa(Gk)}. If ti is a 1 -node, then assume without
loss of generality that |Vj | + χa(Gk) < |Vk| + χa(Gj), set χa(Gi) = |Vj | + χa(Gk), and mark tj as saturated.
When we reach the root, we will have computed χa(G). What remains is to construct an acyclic coloring of
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Figure 1: (a) A cograph G; (b) its canonical cotree; (c) a binary cotree. The graph G is shown along with
an optimal acyclic coloring, which is (necessarily) also an optimal star coloring by Theorem 1.

G that uses χa(G) colors. We proceed in the following way, beginning with the root. As before, let ti be a
node in TG with children tj and tk. If ti is a 0 -node, then we obtain an optimal acyclic coloring of Gi by
combining optimal acyclic colorings of Gj and Gk, which are obtained recursively. If ti is a 1 -node, then
assume without loss of generality that tj is marked as saturated. We obtain an optimal acyclic coloring of Gi

by first finding an optimal acyclic coloring of Gk (recursively, as before), and then coloring each vertex in Vj

with a distinct color in {1 + χa(Gk), . . . , |Vj |+ χa(Gk)}. Correctness follows from Lemma 1. By Theorem 1,
φ is also an optimal star coloring of G.

The number of steps taken by each of the two phases of the algorithm is proportional to the number of
nodes in the cotree, which is O(n).

If G is not given along with a corresponding cotree, then one can be obtained in O(n + m) time [10].
Note that the running time of our algorithm is thus O(n + m) when this step is required.

3 Triangulating Acyclically Colored Graphs

A graph is chordal if it has no induced cycle on four or more vertices. A triangulation of a graph G = (V,E)
is a chordal graph G+ = (V,E+) such that E ⊆ E+. The clique number of a graph G, denoted ω(G), is
the largest number of pairwise adjacent vertices in G. The treewidth of a graph G, denoted tw(G), is the
minimum value of ω(G+)− 1 over all triangulations G+ of G.

Theorem 4 ([15, 17]). If G is a chordal graph, then χa(G) = χ(G) = ω(G) = tw(G) + 1.

Theorem 5 (folklore). For any graph G, χa(G) ≤ tw(G) + 1.

Proof. By the definition of treewidth, there exists a triangulation G+ of G such that ω(G+) = tw(G) + 1.
Since G+ is chordal and since chordal graphs are perfect [17], G+ further satisfies ω(G+) = χ(G+). The
claim then follows from the observation that every proper coloring of G+ is an acyclic coloring of G.

Let G be a graph given with a proper coloring φ. We say that G can be φ-triangulated if there is a
triangulation G+ of G such that φ is a proper coloring of G+. Determining whether G can be φ-triangulated
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is NP-complete [4]. This is known as the triangulating colored graphs problem, and it is polynomially
equivalent to the perfect phylogeny problem from molecular biology [20]. The following result characterizes
the acyclic colorings φ of a cograph G as exactly those colorings for which G can be φ-triangulated.

Theorem 6. If φ is a proper coloring of a cograph G, then φ is an acyclic coloring of G if and only if φ is
a proper coloring of some triangulation of G.

Proof. Sufficiency is established as in the proof of Theorem 5.
Let φ be an arbitrary acyclic coloring of G, and let TG be any cotree of G. We will construct a triangulation

G+ of G such that φ is a proper coloring of G+. Throughout this process, we will maintain the property
that G is a cograph. We can therefore describe the transformation in terms of modifications in TG. One can
easily see that a cograph has an induced cycle on four or more vertices if and only if there is some 1 -node in
the cotree with distinct children t1, t2 such that the subtrees rooted at t1 and t2 each contain a 0 -node. Let
t be a 1 -node in TG with children t1, t2, . . . , tk. Since φ is an acyclic coloring of G, it follows from Lemma 1
that there is at most one child ti of t such that φ uses fewer than |Vi| colors. We now modify the cotree as
follows. For every child tj except ti, make all the leaves of the subtree rooted at tj children of t, and delete
the subtree rooted at tj . The result of applying this procedure to every 1 -node in TG is a new cotree TG+ ;
since every 1 -node of TG+ has at most one child that is not a leaf, it follows that the corresponding graph
G+ is a triangulation of G. Since we add edges only between vertices that have distinct colors, it follows
that φ is a proper coloring of G+, which completes the proof.

Corollary 7. If G is a cograph, then χa(G) = tw(G) + 1.

Note that we can check in polynomial time whether φ is an acyclic coloring of G, and the procedure
described in the proof of Theorem 6 can be used to obtain a compatible triangulation. Figure 2 illustrates
this concept for the graph depicted in Figure 1(a).
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Figure 2: (a) A triangulation G+ of the graph G depicted in Figure 1(a) (bold edges added during the trian-
gulation process), which satisfies χa(G) = χ(G+) = ω(G+) = 6; (b) the canonical cotree TG+ corresponding
to G+.

A graph is an interval graph if its vertices can be put in correspondence with intervals on the real line such
that two vertices are adjacent if and only if the corresponding intervals have a nonempty intersection. An
intervalization of a graph G = (V,E) is an interval graph G+ = (V,E+) such that E ⊆ E+. The pathwidth
of a graph G, denoted pw(G), is the minimum value of ω(G+) − 1 over all intervalizations G+ of G. Note
that since the interval graphs form a proper subclass of the chordal graphs, we have that tw(G) ≤ pw(G)
for all graphs G. Bodlaender and Möhring obtained the following result by showing that every triangulation
of a cograph G is also an intervalization of G.

Theorem 8 ([5]). If G is a cograph, then tw(G) = pw(G).

Combining Corollary 2, Corollary 7, and Theorem 8 we obtain the following result.

Theorem 9. If G is a cograph, then χs(G) = χa(G) = tw(G) + 1 = pw(G) + 1.
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4 Concluding Remarks

Theorem 5 implies a natural heuristic for the acyclic coloring problem: simply find a triangulation G+ of G
that is close to optimal (with respect to treewidth), and then compute an optimal proper coloring of G+,
using O(n + m) time [17]. Here we use the fact that treewidth is a particularly well-studied parameter,
and there are many heuristics, approximation algorithms, exact (exponential) algorithms, and polynomial
time algorithms for many classes of graphs [6, 13, 21]. In particular, for a constant k there is a linear-time
algorithm for determining whether the treewidth of a graph is at most k and, if so, finding a corresponding
triangulation [3].

Furthermore, Lemma 1 applies to any graph that is decomposable with respect to the join operation,
and so it may be used as a reduction step that should be applied as the first step of any heuristic. Moreover,
Lemma 1 implies that we can also find an optimal acyclic or star coloring of any graph for which these
problems can be solved on all the graphs that result from recursively applying the join decomposition. For
example, the tree-cographs [24] are those graphs that result by taking disjoint unions and joins of trees or
other tree-cographs. The class of cographs is properly contained within this class. Since it is trivial to find
an optimal acyclic or star coloring of a tree in linear time [12], it follows that we can solve these problems
in linear time on the entire class of tree-cographs.

In the proof of Theorem 6, we were able to add at least one edge to every induced cycle on four vertices in
G (which was given along with an acyclic coloring) such that no new induced cycles were created. However,
one can easily construct an example for general graphs where this is not the case. Furthermore, there are
graphs G with acyclic colorings φ for which G cannot be φ-triangulated. Two minimal examples are shown
in Figure 3.
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Figure 3: Two graphs, each given with acyclic coloring φ such that neither can be φ-triangulated. In the
graph on the left, we cannot add an edge incident on d or a without creating a bichromatic cycle or violating
the condition that the coloring is proper. Therefore, the cycles induced by {b, d, e, f, a} and {c, d, e, f, a}
must be triangulated by adding edges {b, e} and {c, f}, respectively. This results in {c, b, e, f} inducing a
bichromatic cycle. Note that edge {c, b} must be added in any triangulation of the graph on the right, which
reduces the problem to that of the graph on the left.

In Theorem 6 we proved the equivalence of the acyclic coloring and treewidth problems for cographs by
showing that every acyclic coloring of a cograph G is a proper coloring of some triangulation of G. It would
be useful to prove similar results for other classes of graphs; it is natural to consider other classes for which
the treewidth problem can be solved in polynomial time.
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